

ANSYS Motor-CAD 2023 R1 新功能介绍

新科益系统与咨询(上海)有限公司

Ansys Motor-CAD 2023 R1 Highlights

Automation and workflows

- New pymotorCAD automation interface \checkmark
- New JSON-RPC communication interface \checkmark
- Upgraded internal scripting \checkmark
- More flexible custom outputs \checkmark
- Enhanced automated export to Maxwell \checkmark

New features for machines types, hairpin windings and oil cooling

- Improved models for induction machine electromagnetics
- Multi-physics optimization for wound field machines
- Enhanced winding definition and loss calculation
- New geometries and cooling methods

Mechanical and NVH enhancements

- Induction machine NVH
- Housing and winding stiffness included in \checkmark the mechanical NVH model
- Faster NVH analysis and optimization of \checkmark noise metrics
- Improved mechanical stress analysis for \checkmark optimization workflows

2023 R1: Product Release Detail

/ Motor-CAD 2023R1 新版本名

CAD

- Motor-CAD version names now align with Ansys release numbers.
- Previously:
 - 2022R1 was v15.1.1
 - 2022R2 was v15.1.7

Future:

- 2023R1 pre-releases will be v2023.0.x
- 2023R1 release will be v2023.1.1
- 2023R2 release will be v2023.2.1

Automation and workflows

- pymotorcad package used as default option in internal scripting.
- pymotorcad will be available as a pip package for 2023R1 as part of PyAnsys.
- JSON-RPC API is now used for Automation calls instead of ActiveX.
- ActiveX still supported but pymotorcad very much recommended.
- Python can easily connect to local/remote Motor-CAD instances with pymotorcad package.
- Improved/new docstrings, error messages and debugging.
- New Launch Parameters:
 - Port can be specified for RPC server on launch.
 - Motor-CAD can run script upon launch from command line

Schematic ORadial	🖶 Axial 🛛 🚘 FE	EA 🗎 🔛 FE/	Editor 14 Validation			
Ready-State Node: Label ◎ Temperature ○ Delta Temp			B6.6°C	tor	-CA	١C
Node Name	Temperature	Display				
Units	°C		-100.1°C			
Housing	86.6		94.9°C			
Magnet	90.5		•98.2°C			
Rot_Lam_Yoke	90.3		93.5°C •89.7°C •90.3°C			
Rot_Surface	90.6	\checkmark				
Shaft_Centre	89.7					
Stator_Surface	94.9		93.5°C (Min).5°C			
Stator_Yoke	91.7		102.0°C (Max)			
Tooth(C1)	93.5		• 100 1°C (Av)			
Tooth(C2)	94.9	\checkmark				
Winding (Av)	100.1					
Winding (Avg)(C1)	98.2					
Winding (Avg)(C2)	100.1					
Winding (Max)	102.0					
Winding (Min)	93.5					

- Internal scripting uses new JSON-RPC interface.
 - fixes issue where script would run commands on wrong Motor-CAD instance.
- Internal scripts can be used for model setup, model adjustment during run and post processing of results
- Separate scripts can be run before, during and after calculations for:
 - E-Mag
 - Thermal Steady state
 - Thermal Transient
 - Mechanical Stress
 - Mechanical Forces

- Updated internal Python to 3.9.13.
- Lab Python updated to 3.9.13.
- Now able to generate GUIs in python from the internal scripts.
- E.g. Matplotlib graphs can now be generated by internal scripts.

增强的灵敏度功能

- More options for setting sensitivity study values:
 - Single points , Linear range, logarithmic range

Save Matrix results to file

Run Parameter Study Stop Parameter Study

Load Variation Value

Save Variation Values

增加自定义输出的灵活性

- Python custom outputs have been added to sensitivity study.
- Added option to load default python custom output file at startup.
- Users can now have their own custom parameters setup whenever run they Motor-CAD.

Custom Output Editor Output Editor Settings			- 0	×
New Custom Output Delete Selecter	d Outputs Evaluate Custom Outputs	Import Custom Outputs	Export Selected Outputs	
Custom Output Name	Output	Notes	Enabled ^	
Average Torque	108	Custom Note		
Shaft Speed	3000	Custom Note		_
Line Current	93.75	Custom Note		
DC Bus voltage	800	Custom Note		•
Python Expression			~	
<pre>3 # EXAMPLE OUTPUT 4 5 # Find variables with . 6 # Double click or use : 7 8 # Get MotorCAD variabl 9 AvTorqueVW = GetVariab. 10 11 # Perform functions wi 12 AvTorqueVW = round(AvT. 13 4 # Output calculated va 15 print(AvTorqueVW)</pre>	ActiveXParameter table button to add to script es le("AvTorqueVW") th these variables orqueVW,2) lue with print()			
Open Parameters Table				

- Added use of magnet and rotor UDPs export for BPMOR and BPM machines with Surface/Inset/Embedded Radial/Parallel/Breadloaf rotor types
- Added use of stator UDP for export of Parallel Tooth/SqBase slots for BPM, BPMOR, IM, SYNC and SYNCREL machine types.
- Included Stator Pole Taper Angle in UDP export for SRM machines.
- Improved Outlines export; polyline coordinates drawn to tolerance in Motor-CAD,
- Removed inner and outer rotating bands from airgap in Maxwell export, replacing with single central rotating band.

电机拓扑增强

- Lab and Emag modules now use the same saturation model. Increased simplicity for the user, don't have to build it twice, and can now adjust the resolution in Lab.
- Calculation improvements (rotor leakage inductance correction).
- Rotor bar slot fill factors.
- Variable stator leakage inductance in Lab (calculated at model build time).
- Lab fixed parameter calculation improvements (now calculated using model build speed, current and user specified slip).
- Power factor, D&Q flux linkages and currents outputted from Single Load Point.

ANSYS Motor-CAD v2023.0.1.3 (QA10_i9.mot)* ---- WARNING TEST RELEASE ONLY - NOT VALIDATED -----File Edit Model Motor Type Options Defaults Editors View Results Tools Licence Print Help

 ⊙ Geometry
 ↓ Winding
 ↓ Input Data
 ↓ Calculation
 ◇ E-Magnetics
 ↓ Calculation
 ◇ E-Magnetics
 ↓ Calculation
 ◇ Graphs
 ↓ Calculation
 ◇ Graphs
 ↓ Calculation
 ◇ Ferministry
 ◇ Graphs
 ↓ Calculation
 ↓ Calculation
 ◇ Graphs
 ↓ Calculation
 ◇ Graphs
 ↓ Calculation
 ◇ Graphs
 ↓ Calculation
 ↓ Calcu

Geometry Ge	Calculation & E-Mag	netics 📰 Output Data	EWdg Inductance multiplier: 1	Hanselman End Ring Inductance Calculatic
Variable	Value	Units	r]: 0.97 Bottom Rotor Bar Fill Factor: 1	Richter (default)
Peak Current (FEA on load)	408.8	Amps	Equivalent Circuit Inductance Multipliers:	
Core Loss Resistance	77.85	Ohms	Definition:	Equivalent Circuit Skewing Effe
Stored Magnetic Energy (FEA on load)	12.09	Joules	Constant value (default)	 Richter (default)
Stored Magnetic Conergy (FEA on load)	21.13	Joules	Calibrated	⊖ Veinott
			r]: 0.97 Magnetizing laduatanee: 1	
Peak Back EMF Phase Voltage (FEA on load)	530.3	Volts		
Peak Back EMF Line Voltage (FEA on load)	983.3	Volts	Model Build ↓↓↓ Calculation	╞ Thermal 🛛 🏪 Duty Cycle 🛛 🗮 Operatin
Back EMF Phase Voltage (ms) (FEA on load)	152.4	Volts	Model Options 🔆 Loss Model	
Back EMF Line-Line Voltage (ms) (FEA on load)	276.8	Volts	Saturation Model:	Machine Parameters:
			Model Type:	Pole Number: 6
D-axis flux linkage (FEA on load)	80.36	mVs	Analytical	Slot Number: 72
Q-axis flux linkage (FEA on load)	91.29	mVs	O FEA Map (recommended)	Winding Connection:
D-axis stator current (FEA on load)	0	Amps		Star Connection (default)
D-axis stator current (FEA on load)	408.8	Amps	Loss Model:	 Delta Connection
			Model Type:	
Torque (Virtual work) (FEA on load)	142.1	Nm		Fixed Model Parameters:
Torque (dq) (FEA on load)	133.1	Nm	() FEA Map (recommended)	Phase Resistance (R1): 1.953
Torque (Power balance) (FEA on load)	114.3	Nm	Custom	Rotor Resistance (R2): 4.2
				Stator Leakage Inductance (L1): 15.43
Shaft Torque (FEA on load)	131.8	Nm		Rotor Leakage Inductance (L2): 61.08
Output Power (FEA on load)	89.7	kW		Rotor Bar Height: 11.5
loout Power (EEA on load)	94.25	F.M.		Botor Bar Conductivity: 2 09E7
Power factor (FEA on load)	0.602			Calculation:
System Efficiency (EEA on load)	95.17	%		Calculation:

瞬态感应电机计算

- New Single operating point transient electromagnetic calculation with rotation for induction machines.
- Adjustable initialisation cycles to speed up convergence.
 - Initial cycles run non-rotating analysis, for rapid rotor current convergence (resistivity adjusted to account for slip).
 - Generator mode solved at 2x synchronous speed
 - Remaining cycles run with rotation.

新 SYNC 电机几何比率

- Geometry Ratios added to SYNC machine templates to enable use with optiSLang.
- Salient Pole, Parallel Tooth and Parallel Slot rotor geometries.
- Avoids invalid geometry definitions.
- When using ratios the geometries are always valid.

- Automatic generation of optiSLang study for the SYNC machine.
- No knowledge of scripting required.
- Ratio based geometries always valid.

- Simplification of winding definition.
- Winding pattern now used as definitive source of winding data.
- No longer option to specify number of conductors in slot for thermal model.

- New automatic elementary winding method. ٠
- More accurate end-winding length calculation. ٠
- Wave winding following parallel path impedance • balancing rules.

Design

Winding Type

Elementary

Custom

/ 高保真Lab AC winding 损耗map图

- Calculation of the Lab AC winding loss map using full FEA method.
- Improved AC winding loss calculation accuracy with variation of speed.

/ 不同 hairpin 导体尺寸

- Different sizes of hairpin conductors in slot.
- Used to reduce AC winding losses in conductors near slot opening.

/ IM 与 SYNC 电机在Lab模块中热map图

//nsys

• Thermal performance of Induction and Synchronous machines across full torque/speed range.

扁平表面磁体几何

- ANSYS Motor-CAD v2023.0.1.3 (No File)* ----- WARNING TEST
- Rectangular magnets mounted on rotor lamination surface.
- Can be defined as dimensions or ratios.
- Can make use of rotor notches if required.

Outer rotor magnet reduction geometry

B[T]

2.034

1.831

1.627

- New geometry parameter to shape the outer rotor magnets.
- Shaping of airgap to reduce torque ripple.

喷洒冷却方法改进

ANSYS Motor-CAD v15.2.1.2 (No File)* ----- WARNING TEST RELEASE ONLY - NOT VALIDATED ----

• Improved modelling following research project with University of Nottingham

– 🗆 X

- Independent cooling circuits for axial, radial drip and rotor/shaft nozzles
- New Heat Transfer Coefficient correlations simplifies HTC calibration

Cooling 🛛 🌞 Losses 💧	Mate	erials 🛛 🚺 Interfaces 🗎 😭 F	Radiation	latural Convection	on 🧍 Spra	y Cooling	💠 End Spac	e 🛛 🏠 Settin	gs 🛛 🦂 Materia	al database		
ow Options Radial (from	Housing)										
luid Flow Heat Transfer												
Component	Input h?	Correlation	Stationary h[input] or h[adjust]	Rotational h[input] or h[adjust]	Area Multiplier	Sprayed Area	h Stationary	h Rotational	Correlation Factor	h Mixed	Rt	Note s
Units			W/m²/°C	W/m²/°C	pu	mm ²	W/m²/°C	W/m²/°C	pu	W/m²/°C	°C/W	
W Inner [Front] (Laver a)		Radial Jets (from Housing)	1	1	1	3296	3113	76.78	1	3190	0.09513	
N Outer [Front] (Layer a)		Radial Jets (from Housing)	1	1	1	3296	3113	76.78	0.3	956.9	0.3171	
N Front [Front] (Layer a)		Radial Jets (from Housing)	1	1	1	627.7	3113	76.78	0.7	2233	0.7135	
N Rear [Front] (Layer a)		Radial Jets (from Housing)	1	1	1	627.7	3113	76.78	0.7	2233	0.7135	
W Inner [Front] (Layer b)		Radial Jets (from Housing)	1	1	1	6397	3113	76.78	1	3190	0.04901	
N Outer [Front] (Layer b)		Radial Jets (from Housing)	1	1	1	6397	3113	76.78	0.3	956.9	0.1634	
W Front [Front] (Layer b)		Radial Jets (from Housing)	1	1	1	1218	3113	76.78	0.7	2233	0.3676	
N Rear [Front] (Layer b)		Radial Jets (from Housing)	1	1	1	1218	3113	76.78	0.7	2233	0.3676	
N Inner [Front] (Layer c)		Radial Jets (from Housing)	1	1	1	6208	3113	76.78	1	3190	0.05051	
W Outer [Front] (Layer c)		Radial Jets (from Housing)	1	1	1	6208	3113	76.78	0.3	956.9	0.1684	
W Front [Front] (Layer c)		Radial Jets (from Housing)	1	1	1	1182	3113	76.78	0.7	2233	0.3788	
N Rear [Front] (Layer c)		Radial Jets (from Housing)	1	1	1	1182	3113	76.78	0.7	2233	0.3788	
N Inner [Front] (Layer d)		Radial Jets (from Housing)	1	1	1	6020	3113	76.78	1	3190	0.05208	
N Outer [Front] (Layer d)		Radial Jets (from Housing)	1	1	1	6020	3113	76.78	0.3	956.9	0.1736	
N Front [Front] (Layer d)		Radial Jets (from Housing)	1	1	1	1147	3113	76.78	0.7	2233	0.3906	
N Rear [Front] (Layer d)		Radial Jets (from Housing)	1	1	1	1147	3113	76.78	0.7	2233	0.3906	
W Inner [Front] (Layer e)		Radial Jets (from Housing)	1	1	1	5834	3113	76.78	1	3190	0.05374	
N Outer [Front] (Layer e)		Radial Jets (from Housing)	1	1	1	5834	3113	76.78	0.3	956.9	0.1791	
N Front [Front] (Layer e)		Radial Jets (from Housing)	1	1	1	1111	3113	76.78	0.7	2233	0.403	
N Rear [Front] (Layer e)		Radial Jets (from Housing)	1	1	1	1111	3113	76.78	0.7	2233	0.403	
W Inner [Front] (Layer f)		Radial Jets (from Housing)	1	1	1	5650	3113	76.78	1	3190	0.05549	
N Outer [Front] (Layer f)		Radial Jets (from Housing)	1	1	1	5650	3113	76.78	0.3	956.9	0.185	
V Front [Front] (Layer f)		Radial Jets (from Housing)	1	1	1	1076	3113	76.78	0.7	2233	0.4162	
V Rear [Front] (Layer f)		Radial Jets (from Housing)	1	1	1	1076	3113	76.78	0.7	2233	0.4162	
V Inner [Front] (Layer g)		Radial Jets (from Housing)	1	1	1	2729	3113	76.78	1	3190	0.1149	
N Outer [Front] (Layer g)		Radial Jets (from Housing)	1	1	1	2729	3113	76.78	0.3	956.9	0.383	
Al Farme (Farme) (I array a)		Dedial late (from University a)		4		E10.0	2112	70 70	0.7	2222	0.0017	

-Stator Sleeve

NVH改进

- New Induction machine NVH calculation
 - Define multi-speed operating points using RPM, line current and slip.
 - Enables full NVH calculation and force export for IM.
 - Transient IM calculation improvements significantly speed up calculation for reasonable results.

tor Stress 🚫 Forces					
ad Points.	Calculated Torque	Speed	Peak Line Current	Slip	
	Nm	rpm	Amps		
ad Point:	1.56259	1000	5	0.03	
Add Point	1.62007	2000	10	0.01	
					Calculation:
Clear Points					Generate Forces D
Delete Point					Cancel

- Use 1/6 electrical cycle symmetry
 - Forces calculated for 1/6th of the cycle, rest populated using rotor and stator symmetry
- Use EMag multistatic FEA solver
- Speed up of NVH calculations
- Transient solver remains the default, reduced multistatic can be selected if preferred

Calculated forces for one electrical cycle around the stator

NVH改进

- Option to include housing as well as stator in analytical stiffness & modal calculation.
- Single threaded solver option for increased reliability.
- Outputs defined to allow NVH assessment to be included with OptiSLang optimisation.
- Results exported for improved integration with Ansys Mechanical/VRExperience/Sound NVH process.
- Improvements in useability.

平均柱体和隔磁桥应力-V web 与 U magnets

- Gives a measure of the stresses in important parts of rote ٠ lamination.
- Particularly useful for optimisation studies. ٠
- Enable verbose FEA outputs to show measurement locat ٠ FEA viewer.

of rotor	Advisition for Carbon Car						
		Variable	Value	Units	Variable	Value	Units
		Shaft Speed	1.485E004	rpm	Rotor Lamination displacement (average)	0.01212	mm
					Rotor Lamination displacement (max)	0.01834	mm
locations in	า	Rotor Lamination Material Yield Stress	445	MPa			
	•						
		Rotor Lamination Stress (average)	40.4	MPa	s Tools Ligence Print Help ENVH SSenativity Scripting Units Variable Value pm Rotor Lamination displacement (average) 0.01212 Rotor Lamination displacement (max) 0.01834 MPa MPa MPa MPa MPa MPa MPa MPa		
ANSYS Motor-CAD v2023.0.1.3 (e1 eN	Aobility IPM 150kW.mtt)*	Rotor Lamination Stress (max)	229.8	MPa			
Eile Edit Model Motor Type Option	ns <u>D</u> efaults Ed <u>i</u> tors <u>V</u> iew						
Geometry Manual Calculat	ion │ → Stress │ 🏥 Output Da	Rotor Lamination Yield Stress ratio	0.5164				
Materials 🗙 Settings Americal da Geometry	ences 🕞 Notes	Rotor Lamination Safety Factor	1.936				
User Preferences:	DXF Import View:						
Allow editing of radiation view factor	View:	Rotor Lamination Hoon Stress (inner) (analytical)	58.82	MPa			
Display Verbose FEA Output	() Axial	Theory communication through outcool (interf) [undytedar]	50.02				
Display Verbose Messages	() Winding	Rotor Lamination Hoop Stress (outer) [analytical]	23.83	MPa			
Show Watermark	View Settings:						
Save File with Forwards Compatibility:	Centre Offset:	Average Magnet Post Stress (L1)	110.9	MPa			
 Disabled Enabled 	Y Offset: 0	Average Magnet Bridge Stress (L1)	156	MPa			
Hint Options:	Seale: 1			·			
Hint display time: 2.5	Botation: 0	Rotor SVM=27.2N/mm2 Area= 968.3mm2 Density =	=7650kg/m3			16 September 2022	www.motor-design.com
				IC Contombor 2022	unusu meter design com		

Efficiency Map 比照

- Improved efficiency map comparison option.
- Allows comparison of data with different x/y ranges.
- Data points are interpolated.

Lab轴向扩展

- Active length scaling for stator, rotor & magnet length.
- Accurate performance & loss calculations without rebuilding Lab model for different axial lengths.
- Thermal model axial length adjustments for coupled solution.
- Significant speed up of geometry optimisation e.g. optiSLang.

Toda Kogyo 粘合磁体的Granta 材料数据

Material	Туре	Thermal Conductivity	Specific Heat	Density	Resistivity	Temp. Coef. of Resistivity	Poisson's ratio	Young's Coefficient	Yield Stress	Magnet BH Values	Notes
Units		W/m/°C	J/kg/°C	kg/m³	Ohm.m			MPa	MPa		
MS-Schramberg NdFeB	Magnet	0	0	4100	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 27-80p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	4500	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 30-60p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	4400	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 32-80p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	4500	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 37-60p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	4700	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 38-80p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	4700	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 42-60p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	5000	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 43-80p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	5200	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 46-80p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	4800	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 48-60p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	5300	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 49-80p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	5200	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 55-60p. Data provided by
MS-Schramberg NdFeB	Magnet	0	0	4800	0	0	0	0	0	12	Bonded molded magnet - MS-Schramberg - NdFeB 76-110p. Data provided by
Spacemagnets HT-N10	Magnet	0	0	6050	0	0	0	0	0	15	Bonded molded magnet - Spacemagnets - HT-N10 - Compression Molded. Data
Spacemagnets HT-N10H	Magnet	0	0	6050	0	0	0	0	0	15	Bonded molded magnet - Spacemagnets - HT-N10H - Compression Molded. Data
Spacemagnets HT-N10S	Magnet	0	0	6150	0	0	0	0	0	35	Bonded molded magnet - Spacemagnets - HT-N10S - Compression Molded. Data
Spacemagnets HT-N12	Magnet	0	0	6150	0	0	0	0	0	15	Bonded molded magnet - Spacemagnets - HT-N12 - Compression Molded. Data
Spacemagnets HT-N12S	Magnet	0	0	6150	0	0	0	0	0	78	Bonded molded magnet - Spacemagnets - HT-N12S - Compression Molded. Data
Spacemagnets HT-N8L	Magnet	0	0	5950	0	0	0	0	0	15	Bonded molded magnet - Spacemagnets - HT-N8L - Compression Molded. Data
Toda Kogyo TP-A27N	Magnet	0	0	3750	0	0	0	32000	0	640	Bonded molded magnet - Toda Kogyo - TP-A27N. Anisotropic Ferrite PA12
Toda Kogyo TP-S68	Magnet	0	0	3770	0	0	0.28	5700	0	640	Bonded molded magnet - Toda Kogyo - TP-S68. Anisotropic Ferrite PA6 compound
Toda Kogyo TP-S73	Magnet	0	0	3420	0	0	0	4500	0	640	Bonded molded magnet - Toda Kogyo - TP-S73. Anisotropic Ferrite PPS compound
Toda Kogyo TRP-M760	Magnet	0	0	5300	0.0012004	0	0.24	31000	0	560	Bonded molded magnet - Toda Kogyo - TRP-M760. Isotropic NdFeB PPS compound
Toda Kogyo TRP-T710C	Magnet	0	0	5000	0.0016	0	0	0	0	560	Bonded molded magnet - Toda Kogyo - TRP-T710C. Anisotropic NdFeB PPS

Recoma 28_Alstom

Recoma 28_QA78

Recoma 28_QA85

Sm2Co17 175/160v

Toda Kogyo | TP-A27N

Toda Kogyo | TP-S68

Toda Kogyo | TP-S73

Toda Kogyo | TRP-M760 Toda Kogyo | TRP-T710C

Transcend_Fenite_FB9H_Calibrated

Recoma 30S

Recoma 32

UnitMagnet

Vinyl Ferrite

Vacomax 225 HR

Vacodym

Y32

Y34

Sumitomo SMC 钢材的Granta 材料数据

Material	Туре	Thermal Conductivity	Specific Heat	Density	Resistivity	Temp. Coef. of Resistivity	Lamination Thickness	n Kh s (Steinmetz)	Kh (Bertotti Classical)	Kh (Bertotti Maxwell)	Keddy	Kexc (Bertotti Classical)	Kexc (Bertotti Maxwell)	Alpha (Steinmetz)	Alpha (Bertotti Classical) (Be	^					
Units		W/m/°C	J/kg/°C	kg/m³	Ohm.m																
Micrometals 66 Material	Steel	0	0	6200	0.5	0	5	0.1	0.1	0.1	7.079	0.0010631899	0.0018624799	1.0924325	1.2521041						
Micrometals 70 Material	Steel	0	0	7400	0.5	0	5	0.0468557	0.049046037	0.048824026	1E-7	6.3783316E-5	6.9324554E-5	2.0576971	1.9820241	G TEST RELEASE ONLY - N	IOT VALIDATI	ED			- 0
Micrometals 8 Material	Steel	0	0	6500	0.5	0	5	0.1	0.1	0.1	5.087	0.00087548237	0.0016192772	1.131776	1.3262971	esults Too <u>l</u> s Li <u>c</u> ence	Print Help	p			
Micrometals M125 Material	Steel	0	0	7700	0.5	0	5	0.0466896	0.045500353	0.045592817	1E-7	7.0245108E-5	9.5223213E-5	1.7344902	1.8511834	📃 🖽 Output Data 🛛 🖉 G	raphs	Sensitivity 🕞 Scripting			
PMG S280b	Steel	0	0	7000	10	0	5	0.1	0.1	0.083549279	2.022	0.0017891377	0.0021527161	1.5216064	1.9240691						
PMG S300b	Steel	0	0	7000	10	0	5	0.1	0.1	0.090373151	2.170	0.0019156407	0.0021196626	1.512042	1.9455777						
PMG S400b	Steel	0	0	7000	10	0	5	0.1	0.1	0.078460958	2.053	0.001823507	0.0022918553	1.4821793	1.8912986	el BH Steel Losses Mag	nets Electric	cal Mechanical			
PMG \$720	Steel	0	0	7000	10	0	5	0.1	0.049674941	0.1	1.894	0.0028016536	0.0017560312	1.4707484	2.6465067	sta point:	B vs H µ	ur vs B Incremental µr vs B			
PMG STestb	Steel	0	0	7000	10	0	5	0.1	0.1	0.07784309	1.977	0.0017459808	0.0022393606	1.4962163	1.8946676	dd Data Point	X-Axis So	cale			
Sintex B7	Steel	0	0	7450	0.001	0	5	0.1	0.066656984	0.067688441	2.048	0.002369494	0.0021626949	1.5843499	2.0116706	delete the selected points:		rithmic 💿 Linear			
Sintex B7X	Steel	0	0	7500	0.0007	0	5	0.0562431	0.017604187	0.03577057	3.093	0.0031787175	0.0025479262	1.8357595	3.1760455	lete Data Points		Flux Density	vs Magnetic Field for Sun	nitomo SMC HB2, 20°C	,
Sintex M7	Steel	0	0	7450	0.0004	0	5	0.0935959	0.05103864	0.06755147	2.672	0.0030042313	0.0020912655	1.7328156	2.3077099	a from clipboard:	4.2				
Sintex S10	Steel	0	0	7560	7E-5	0	5	0.1	0.06081615	0.078666565	3.160	0.0031683486	0	1.7628553	2.2466303	ert Data Points	3.8				
Sintex S7	Steel	0	0	7570	0.0002	0	5	0.0992634	0.073808943	0.072650449	2.164	0.002130552	0.0012497233	1.7035131	1.8999704	Н ^	3.6				
Sintex S7b	Steel	0	0	7520	0.0006	0	5	0.1	0.075508965	0.06414864	2.180	0.0021862285	0.0021969771	1.6161737	1.8804588	Amps/m	3.4			•	
Sumitomo SMC HB1, 20°C	Steel	33	453	7500	0.00099	0	0	0.1	0.093144087	0.080085907	1.075	0.00095366947	0.0012440173	1.6992429	1.7393471	0	3.2		-		
Sumitomo SMC HB2, 20°C	Steel	37	440	7450	0.00085	0	0	0.0700351	0.056735423	0.05178212	1.089	0.0010925885	0.001241511	1.6969579	1.8631	255.531	3				
Sumitomo SMC HB3, 20°C	Steel	33	453	7500	0.00029	0	0	0.1	0.093304122	0.082274099	1.227	0.0010701167	0.0013295864	1.7605528	1.7944588	374.027	2.8		•		
Sumitomo SMC HF1, 20°C	Steel	31	434	7200	0.00952	0	0	0.1	0.1	0.1	3.144	0.00087289501	0.00065276534	1.5406612	2.7404348	588.547	2.6				
Sumitomo SMC HF3, 20°C	Steel	10	455	7250	0.4209	0	0	0.0974358	0.093963313	0.08892647	1E-7	0.0001731877	0.0003452605	1.6964624	1.7244968	690.773	E 2.4				
Sumitomo SMC HX1, 20°C	Steel	8.9	460	6900	0.0219	0	0	0.1	0.097055337	0.099126921	1E-7	0.00013640398	0.00019396733	1.8827474	1.8614585	873.786	Ĕ 2	***			
Sumitomo SMC NM, 20°C	Steel	23	464	7450	0.003341	0	0	0.1	0.1	0.1	7.129	0.0012346151	0.0012190808	1.572055	2.0383101	960.978	1.8	ś			
																1114.08	1.6	i			
															>	1184.13	1.4				
												Found 56 r	naterials Imp	port Selected	Cancel	1323.97	1.2				
																1395.5	1-				
													NO30		0.	865932 1469.16 891455 1544.45	0.8				
													POLYCOR 0.3% Si		BHO	Inve Extrapolation:	0.6				
													POSCO 27PN1350	_HVH220_WRSM_V	V1 Ena	able Extrapolation	0.4				
													Stahl 37	UF	Max H	H Value: 1000000	0.2	•			
													Stahl37		Extrap	polation Points: 10		0 5	500,000	1,000,000	1,500,0
													Stahl3/_QA46_Syn	C_Hairpin		trapolate Remove Points			H [Amps/	/m]	

